Title Highly epistatic genetic architecture of root length in Arabidopsis thaliana Authors
نویسندگان
چکیده
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. This is despite the fact that non-additive genetic effects, such as epistatic interactions and developmental noise, are also likely to make important contributions to the phenotypic variability. Analyses beyond additivity require additional care in the design and collection of data, and introduce significant analytical and computational challenges in the statistical analyses. Here, we have conducted a study that, by focusing on a model complex trait that allows precise phenotyping across many replicates and by applying advanced analytical tools capable of capturing epistatic interactions, overcome these challenges. Specifically, we examined the genetic determinants of Arabidopsis thaliana root length, considering both trait mean and variance. Analysis of narrow-and broad-sense heritability of mean root length identified a large contribution of non-additive variation and a low contribution of additive variation. Also, no loci were found to contribute to mean root length using a standard additive model based genome. CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/008789 doi: bioRxiv preprint first posted online Sep. 4, 2014;
منابع مشابه
مشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملA Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely ...
متن کاملGenetic Variance for Root Length in Arabidopsis thaliana
1 Efforts to identify loci underlying complex traits generally assume that most genetic variance is 2 additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the 3 narrow-sense heritability for this trait was statistically zero. This low additive genetic variance 4 likely explains why no associations to root length could be found using standard additive-model...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملEpistatic genetic architecture of root length in Arabidopsis thaliana Authors
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. This is despite the fact that non-additive genetic effects, such as epistatic interactions and developmental noise, are also likely to make important contributions to the phenotypic variability. Analyses beyond additivity require additional care in the design and collection of data, and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014